Metamath Proof Explorer


Theorem r1pdeglt

Description: The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E = rem 1p R
r1pval.p P = Poly 1 R
r1pval.b B = Base P
r1pcl.c C = Unic 1p R
r1pdeglt.d D = deg 1 R
Assertion r1pdeglt R Ring F B G C D F E G < D G

Proof

Step Hyp Ref Expression
1 r1pval.e E = rem 1p R
2 r1pval.p P = Poly 1 R
3 r1pval.b B = Base P
4 r1pcl.c C = Unic 1p R
5 r1pdeglt.d D = deg 1 R
6 simp2 R Ring F B G C F B
7 2 3 4 uc1pcl G C G B
8 7 3ad2ant3 R Ring F B G C G B
9 eqid quot 1p R = quot 1p R
10 eqid P = P
11 eqid - P = - P
12 1 2 3 9 10 11 r1pval F B G B F E G = F - P F quot 1p R G P G
13 6 8 12 syl2anc R Ring F B G C F E G = F - P F quot 1p R G P G
14 13 fveq2d R Ring F B G C D F E G = D F - P F quot 1p R G P G
15 eqid F quot 1p R G = F quot 1p R G
16 9 2 3 5 11 10 4 q1peqb R Ring F B G C F quot 1p R G B D F - P F quot 1p R G P G < D G F quot 1p R G = F quot 1p R G
17 15 16 mpbiri R Ring F B G C F quot 1p R G B D F - P F quot 1p R G P G < D G
18 17 simprd R Ring F B G C D F - P F quot 1p R G P G < D G
19 14 18 eqbrtrd R Ring F B G C D F E G < D G