Metamath Proof Explorer


Theorem r1pid

Description: Express the original polynomial F as F = ( q x. G ) + r using the quotient and remainder functions for q and r . (Contributed by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses r1pid.p P = Poly 1 R
r1pid.b B = Base P
r1pid.c C = Unic 1p R
r1pid.q Q = quot 1p R
r1pid.e E = rem 1p R
r1pid.t · ˙ = P
r1pid.m + ˙ = + P
Assertion r1pid R Ring F B G C F = F Q G · ˙ G + ˙ F E G

Proof

Step Hyp Ref Expression
1 r1pid.p P = Poly 1 R
2 r1pid.b B = Base P
3 r1pid.c C = Unic 1p R
4 r1pid.q Q = quot 1p R
5 r1pid.e E = rem 1p R
6 r1pid.t · ˙ = P
7 r1pid.m + ˙ = + P
8 1 2 3 uc1pcl G C G B
9 eqid - P = - P
10 5 1 2 4 6 9 r1pval F B G B F E G = F - P F Q G · ˙ G
11 8 10 sylan2 F B G C F E G = F - P F Q G · ˙ G
12 11 3adant1 R Ring F B G C F E G = F - P F Q G · ˙ G
13 12 oveq2d R Ring F B G C F Q G · ˙ G + ˙ F E G = F Q G · ˙ G + ˙ F - P F Q G · ˙ G
14 1 ply1ring R Ring P Ring
15 14 3ad2ant1 R Ring F B G C P Ring
16 ringabl P Ring P Abel
17 15 16 syl R Ring F B G C P Abel
18 4 1 2 3 q1pcl R Ring F B G C F Q G B
19 8 3ad2ant3 R Ring F B G C G B
20 2 6 ringcl P Ring F Q G B G B F Q G · ˙ G B
21 15 18 19 20 syl3anc R Ring F B G C F Q G · ˙ G B
22 ringgrp P Ring P Grp
23 15 22 syl R Ring F B G C P Grp
24 simp2 R Ring F B G C F B
25 2 9 grpsubcl P Grp F B F Q G · ˙ G B F - P F Q G · ˙ G B
26 23 24 21 25 syl3anc R Ring F B G C F - P F Q G · ˙ G B
27 2 7 ablcom P Abel F Q G · ˙ G B F - P F Q G · ˙ G B F Q G · ˙ G + ˙ F - P F Q G · ˙ G = F - P F Q G · ˙ G + ˙ F Q G · ˙ G
28 17 21 26 27 syl3anc R Ring F B G C F Q G · ˙ G + ˙ F - P F Q G · ˙ G = F - P F Q G · ˙ G + ˙ F Q G · ˙ G
29 2 7 9 grpnpcan P Grp F B F Q G · ˙ G B F - P F Q G · ˙ G + ˙ F Q G · ˙ G = F
30 23 24 21 29 syl3anc R Ring F B G C F - P F Q G · ˙ G + ˙ F Q G · ˙ G = F
31 13 28 30 3eqtrrd R Ring F B G C F = F Q G · ˙ G + ˙ F E G