Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|
2 |
|
r1padd1.u |
|
3 |
|
r1padd1.n |
|
4 |
|
r1padd1.e |
|
5 |
|
r1pid2.r |
|
6 |
|
r1pid2.d |
|
7 |
|
r1pid2.p |
|
8 |
|
r1pid2.q |
|
9 |
5
|
idomringd |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 3 10 4 11 12
|
r1pid |
|
14 |
9 7 8 13
|
syl3anc |
|
15 |
14
|
eqeq2d |
|
16 |
|
eqcom |
|
17 |
15 16
|
bitr4di |
|
18 |
|
eqid |
|
19 |
1
|
ply1ring |
|
20 |
9 19
|
syl |
|
21 |
20
|
ringgrpd |
|
22 |
4 1 2 3
|
r1pcl |
|
23 |
9 7 8 22
|
syl3anc |
|
24 |
2 12 18 21 23
|
grplidd |
|
25 |
24
|
eqeq2d |
|
26 |
10 1 2 3
|
q1pcl |
|
27 |
9 7 8 26
|
syl3anc |
|
28 |
1 2 3
|
uc1pcl |
|
29 |
8 28
|
syl |
|
30 |
2 11 20 27 29
|
ringcld |
|
31 |
2 18
|
ring0cl |
|
32 |
9 19 31
|
3syl |
|
33 |
2 12
|
grprcan |
|
34 |
21 30 32 23 33
|
syl13anc |
|
35 |
17 25 34
|
3bitr2d |
|
36 |
|
isidom |
|
37 |
5 36
|
sylib |
|
38 |
37
|
simpld |
|
39 |
1
|
ply1crng |
|
40 |
38 39
|
syl |
|
41 |
2 11
|
crngcom |
|
42 |
40 29 27 41
|
syl3anc |
|
43 |
42
|
eqeq1d |
|
44 |
5
|
idomdomd |
|
45 |
1
|
ply1domn |
|
46 |
44 45
|
syl |
|
47 |
1 18 3
|
uc1pn0 |
|
48 |
8 47
|
syl |
|
49 |
|
eqid |
|
50 |
2 49 18
|
domnrrg |
|
51 |
46 29 48 50
|
syl3anc |
|
52 |
49 2 11 18
|
rrgeq0 |
|
53 |
20 51 27 52
|
syl3anc |
|
54 |
35 43 53
|
3bitr2d |
|
55 |
2 11 18 20 29
|
ringlzd |
|
56 |
55
|
oveq2d |
|
57 |
|
eqid |
|
58 |
2 18 57
|
grpsubid1 |
|
59 |
21 7 58
|
syl2anc |
|
60 |
56 59
|
eqtr2d |
|
61 |
60
|
fveq2d |
|
62 |
61
|
breq1d |
|
63 |
32
|
biantrurd |
|
64 |
10 1 2 6 57 11 3
|
q1peqb |
|
65 |
9 7 8 64
|
syl3anc |
|
66 |
62 63 65
|
3bitrd |
|
67 |
54 66
|
bitr4d |
|