Metamath Proof Explorer


Theorem r1pid2

Description: Identity law for polynomial remainder operation: it leaves a polynomial A unchanged iff the degree of A is less than the degree of the divisor B . (Contributed by Thierry Arnoux, 2-Apr-2025) Generalize to domains. (Revised by SN, 21-Jun-2025)

Ref Expression
Hypotheses r1pid2.p P = Poly 1 R
r1pid2.u U = Base P
r1pid2.n N = Unic 1p R
r1pid2.e E = rem 1p R
r1pid2.d D = deg 1 R
r1pid2.r φ R Domn
r1pid2.a φ A U
r1pid2.b φ B N
Assertion r1pid2 φ A E B = A D A < D B

Proof

Step Hyp Ref Expression
1 r1pid2.p P = Poly 1 R
2 r1pid2.u U = Base P
3 r1pid2.n N = Unic 1p R
4 r1pid2.e E = rem 1p R
5 r1pid2.d D = deg 1 R
6 r1pid2.r φ R Domn
7 r1pid2.a φ A U
8 r1pid2.b φ B N
9 eqid 0 P = 0 P
10 eqid P = P
11 domnring R Domn R Ring
12 6 11 syl φ R Ring
13 eqid quot 1p R = quot 1p R
14 13 1 2 3 q1pcl R Ring A U B N A quot 1p R B U
15 12 7 8 14 syl3anc φ A quot 1p R B U
16 1 2 3 uc1pcl B N B U
17 8 16 syl φ B U
18 1 9 3 uc1pn0 B N B 0 P
19 8 18 syl φ B 0 P
20 17 19 eldifsnd φ B U 0 P
21 1 ply1domn R Domn P Domn
22 6 21 syl φ P Domn
23 2 9 10 15 20 22 domneq0r φ A quot 1p R B P B = 0 P A quot 1p R B = 0 P
24 eqid + P = + P
25 1 2 3 13 4 10 24 r1pid R Ring A U B N A = A quot 1p R B P B + P A E B
26 12 7 8 25 syl3anc φ A = A quot 1p R B P B + P A E B
27 26 eqeq2d φ A E B = A A E B = A quot 1p R B P B + P A E B
28 eqcom A quot 1p R B P B + P A E B = A E B A E B = A quot 1p R B P B + P A E B
29 27 28 bitr4di φ A E B = A A quot 1p R B P B + P A E B = A E B
30 domnring P Domn P Ring
31 22 30 syl φ P Ring
32 31 ringgrpd φ P Grp
33 4 1 2 3 r1pcl R Ring A U B N A E B U
34 12 7 8 33 syl3anc φ A E B U
35 2 24 9 32 34 grplidd φ 0 P + P A E B = A E B
36 35 eqeq2d φ A quot 1p R B P B + P A E B = 0 P + P A E B A quot 1p R B P B + P A E B = A E B
37 2 10 31 15 17 ringcld φ A quot 1p R B P B U
38 2 9 ring0cl P Ring 0 P U
39 31 38 syl φ 0 P U
40 2 24 grprcan P Grp A quot 1p R B P B U 0 P U A E B U A quot 1p R B P B + P A E B = 0 P + P A E B A quot 1p R B P B = 0 P
41 32 37 39 34 40 syl13anc φ A quot 1p R B P B + P A E B = 0 P + P A E B A quot 1p R B P B = 0 P
42 29 36 41 3bitr2d φ A E B = A A quot 1p R B P B = 0 P
43 2 10 9 31 17 ringlzd φ 0 P P B = 0 P
44 43 oveq2d φ A - P 0 P P B = A - P 0 P
45 eqid - P = - P
46 2 9 45 grpsubid1 P Grp A U A - P 0 P = A
47 32 7 46 syl2anc φ A - P 0 P = A
48 44 47 eqtr2d φ A = A - P 0 P P B
49 48 fveq2d φ D A = D A - P 0 P P B
50 49 breq1d φ D A < D B D A - P 0 P P B < D B
51 39 biantrurd φ D A - P 0 P P B < D B 0 P U D A - P 0 P P B < D B
52 13 1 2 5 45 10 3 q1peqb R Ring A U B N 0 P U D A - P 0 P P B < D B A quot 1p R B = 0 P
53 12 7 8 52 syl3anc φ 0 P U D A - P 0 P P B < D B A quot 1p R B = 0 P
54 50 51 53 3bitrd φ D A < D B A quot 1p R B = 0 P
55 23 42 54 3bitr4d φ A E B = A D A < D B