Metamath Proof Explorer


Theorem r1plmhm

Description: The univariate polynomial remainder function F is a module homomorphism. Its image ( F "s P ) is sometimes called the "ring of remainders" (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1plmhm.1 P = Poly 1 R
r1plmhm.2 U = Base P
r1plmhm.4 E = rem 1p R
r1plmhm.5 N = Unic 1p R
r1plmhm.6 F = f U f E M
r1plmhm.9 φ R Ring
r1plmhm.10 φ M N
Assertion r1plmhm φ F P LMHom F 𝑠 P

Proof

Step Hyp Ref Expression
1 r1plmhm.1 P = Poly 1 R
2 r1plmhm.2 U = Base P
3 r1plmhm.4 E = rem 1p R
4 r1plmhm.5 N = Unic 1p R
5 r1plmhm.6 F = f U f E M
6 r1plmhm.9 φ R Ring
7 r1plmhm.10 φ M N
8 6 adantr φ f U R Ring
9 simpr φ f U f U
10 7 adantr φ f U M N
11 3 1 2 4 r1pcl R Ring f U M N f E M U
12 8 9 10 11 syl3anc φ f U f E M U
13 12 5 fmptd φ F : U U
14 eqid + P = + P
15 anass φ a U b U φ a U b U
16 6 ad6antr φ a U b U p U q U F a = F p F b = F q R Ring
17 simp-6r φ a U b U p U q U F a = F p F b = F q a U
18 7 ad6antr φ a U b U p U q U F a = F p F b = F q M N
19 simplr φ a U b U p U q U F a = F p F b = F q F a = F p
20 oveq1 f = a f E M = a E M
21 ovexd φ a U b U p U q U F a = F p F b = F q a E M V
22 5 20 17 21 fvmptd3 φ a U b U p U q U F a = F p F b = F q F a = a E M
23 oveq1 f = p f E M = p E M
24 simp-4r φ a U b U p U q U F a = F p F b = F q p U
25 ovexd φ a U b U p U q U F a = F p F b = F q p E M V
26 5 23 24 25 fvmptd3 φ a U b U p U q U F a = F p F b = F q F p = p E M
27 19 22 26 3eqtr3d φ a U b U p U q U F a = F p F b = F q a E M = p E M
28 simp-5r φ a U b U p U q U F a = F p F b = F q b U
29 1 2 4 3 16 17 18 27 14 24 28 r1padd1 φ a U b U p U q U F a = F p F b = F q a + P b E M = p + P b E M
30 oveq1 f = a + P b f E M = a + P b E M
31 1 ply1ring R Ring P Ring
32 6 31 syl φ P Ring
33 32 ringgrpd φ P Grp
34 33 ad6antr φ a U b U p U q U F a = F p F b = F q P Grp
35 2 14 34 17 28 grpcld φ a U b U p U q U F a = F p F b = F q a + P b U
36 ovexd φ a U b U p U q U F a = F p F b = F q a + P b E M V
37 5 30 35 36 fvmptd3 φ a U b U p U q U F a = F p F b = F q F a + P b = a + P b E M
38 oveq1 f = p + P b f E M = p + P b E M
39 2 14 34 24 28 grpcld φ a U b U p U q U F a = F p F b = F q p + P b U
40 ovexd φ a U b U p U q U F a = F p F b = F q p + P b E M V
41 5 38 39 40 fvmptd3 φ a U b U p U q U F a = F p F b = F q F p + P b = p + P b E M
42 29 37 41 3eqtr4d φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P b
43 32 ringabld φ P Abel
44 43 ad6antr φ a U b U p U q U F a = F p F b = F q P Abel
45 2 14 ablcom P Abel p U b U p + P b = b + P p
46 44 24 28 45 syl3anc φ a U b U p U q U F a = F p F b = F q p + P b = b + P p
47 46 fveq2d φ a U b U p U q U F a = F p F b = F q F p + P b = F b + P p
48 42 47 eqtrd φ a U b U p U q U F a = F p F b = F q F a + P b = F b + P p
49 simpr φ a U b U p U q U F a = F p F b = F q F b = F q
50 oveq1 f = b f E M = b E M
51 ovexd φ a U b U p U q U F a = F p F b = F q b E M V
52 5 50 28 51 fvmptd3 φ a U b U p U q U F a = F p F b = F q F b = b E M
53 oveq1 f = q f E M = q E M
54 simpllr φ a U b U p U q U F a = F p F b = F q q U
55 ovexd φ a U b U p U q U F a = F p F b = F q q E M V
56 5 53 54 55 fvmptd3 φ a U b U p U q U F a = F p F b = F q F q = q E M
57 49 52 56 3eqtr3d φ a U b U p U q U F a = F p F b = F q b E M = q E M
58 1 2 4 3 16 28 18 57 14 54 24 r1padd1 φ a U b U p U q U F a = F p F b = F q b + P p E M = q + P p E M
59 oveq1 f = b + P p f E M = b + P p E M
60 2 14 34 28 24 grpcld φ a U b U p U q U F a = F p F b = F q b + P p U
61 ovexd φ a U b U p U q U F a = F p F b = F q b + P p E M V
62 5 59 60 61 fvmptd3 φ a U b U p U q U F a = F p F b = F q F b + P p = b + P p E M
63 oveq1 f = q + P p f E M = q + P p E M
64 2 14 34 54 24 grpcld φ a U b U p U q U F a = F p F b = F q q + P p U
65 ovexd φ a U b U p U q U F a = F p F b = F q q + P p E M V
66 5 63 64 65 fvmptd3 φ a U b U p U q U F a = F p F b = F q F q + P p = q + P p E M
67 58 62 66 3eqtr4d φ a U b U p U q U F a = F p F b = F q F b + P p = F q + P p
68 2 14 ablcom P Abel q U p U q + P p = p + P q
69 44 54 24 68 syl3anc φ a U b U p U q U F a = F p F b = F q q + P p = p + P q
70 69 fveq2d φ a U b U p U q U F a = F p F b = F q F q + P p = F p + P q
71 48 67 70 3eqtrd φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P q
72 71 expl φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P q
73 72 anasss φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P q
74 15 73 sylanbr φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P q
75 74 3impa φ a U b U p U q U F a = F p F b = F q F a + P b = F p + P q
76 eqid Scalar P = Scalar P
77 eqid Base Scalar P = Base Scalar P
78 simplr φ F a = F b k Base Scalar P a U b U F a = F b
79 simpr2 φ F a = F b k Base Scalar P a U b U a U
80 ovexd φ F a = F b k Base Scalar P a U b U a E M V
81 5 20 79 80 fvmptd3 φ F a = F b k Base Scalar P a U b U F a = a E M
82 simpr3 φ F a = F b k Base Scalar P a U b U b U
83 ovexd φ F a = F b k Base Scalar P a U b U b E M V
84 5 50 82 83 fvmptd3 φ F a = F b k Base Scalar P a U b U F b = b E M
85 78 81 84 3eqtr3d φ F a = F b k Base Scalar P a U b U a E M = b E M
86 85 oveq2d φ F a = F b k Base Scalar P a U b U k P a E M = k P b E M
87 6 ad2antrr φ F a = F b k Base Scalar P a U b U R Ring
88 7 ad2antrr φ F a = F b k Base Scalar P a U b U M N
89 eqid P = P
90 eqid Base R = Base R
91 simpr1 φ F a = F b k Base Scalar P a U b U k Base Scalar P
92 1 ply1sca R Ring R = Scalar P
93 6 92 syl φ R = Scalar P
94 93 fveq2d φ Base R = Base Scalar P
95 94 ad2antrr φ F a = F b k Base Scalar P a U b U Base R = Base Scalar P
96 91 95 eleqtrrd φ F a = F b k Base Scalar P a U b U k Base R
97 1 2 4 3 87 79 88 89 90 96 r1pvsca φ F a = F b k Base Scalar P a U b U k P a E M = k P a E M
98 1 2 4 3 87 82 88 89 90 96 r1pvsca φ F a = F b k Base Scalar P a U b U k P b E M = k P b E M
99 86 97 98 3eqtr4d φ F a = F b k Base Scalar P a U b U k P a E M = k P b E M
100 oveq1 f = k P a f E M = k P a E M
101 1 ply1lmod R Ring P LMod
102 87 101 syl φ F a = F b k Base Scalar P a U b U P LMod
103 2 76 89 77 102 91 79 lmodvscld φ F a = F b k Base Scalar P a U b U k P a U
104 ovexd φ F a = F b k Base Scalar P a U b U k P a E M V
105 5 100 103 104 fvmptd3 φ F a = F b k Base Scalar P a U b U F k P a = k P a E M
106 oveq1 f = k P b f E M = k P b E M
107 2 76 89 77 102 91 82 lmodvscld φ F a = F b k Base Scalar P a U b U k P b U
108 ovexd φ F a = F b k Base Scalar P a U b U k P b E M V
109 5 106 107 108 fvmptd3 φ F a = F b k Base Scalar P a U b U F k P b = k P b E M
110 99 105 109 3eqtr4d φ F a = F b k Base Scalar P a U b U F k P a = F k P b
111 110 an32s φ k Base Scalar P a U b U F a = F b F k P a = F k P b
112 111 ex φ k Base Scalar P a U b U F a = F b F k P a = F k P b
113 6 101 syl φ P LMod
114 2 13 14 75 76 77 112 113 89 imaslmhm φ F 𝑠 P LMod F P LMHom F 𝑠 P
115 114 simprd φ F P LMHom F 𝑠 P