Metamath Proof Explorer


Theorem r1pquslmic

Description: The univariate polynomial remainder ring ( F "s P ) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1plmhm.1 P = Poly 1 R
r1plmhm.2 U = Base P
r1plmhm.4 E = rem 1p R
r1plmhm.5 N = Unic 1p R
r1plmhm.6 F = f U f E M
r1plmhm.9 φ R Ring
r1plmhm.10 φ M N
r1pquslmic.0 0 ˙ = 0 P
r1pquslmic.k K = F -1 0 ˙
r1pquslmic.q Q = P / 𝑠 P ~ QG K
Assertion r1pquslmic φ Q 𝑚 F 𝑠 P

Proof

Step Hyp Ref Expression
1 r1plmhm.1 P = Poly 1 R
2 r1plmhm.2 U = Base P
3 r1plmhm.4 E = rem 1p R
4 r1plmhm.5 N = Unic 1p R
5 r1plmhm.6 F = f U f E M
6 r1plmhm.9 φ R Ring
7 r1plmhm.10 φ M N
8 r1pquslmic.0 0 ˙ = 0 P
9 r1pquslmic.k K = F -1 0 ˙
10 r1pquslmic.q Q = P / 𝑠 P ~ QG K
11 eqidd φ F 𝑠 P = F 𝑠 P
12 2 a1i φ U = Base P
13 eqid + P = + P
14 6 adantr φ f U R Ring
15 simpr φ f U f U
16 7 adantr φ f U M N
17 3 1 2 4 r1pcl R Ring f U M N f E M U
18 14 15 16 17 syl3anc φ f U f E M U
19 18 5 fmptd φ F : U U
20 fimadmfo F : U U F : U onto F U
21 19 20 syl φ F : U onto F U
22 anass φ a U b U φ a U b U
23 simplr φ a U b U f U q U F a = F f F b = F q F a = F f
24 simpr φ a U b U f U q U F a = F f F b = F q F b = F q
25 23 24 oveq12d φ a U b U f U q U F a = F f F b = F q F a + F 𝑠 P F b = F f + F 𝑠 P F q
26 1 2 3 4 5 6 7 r1plmhm φ F P LMHom F 𝑠 P
27 26 lmhmghmd φ F P GrpHom F 𝑠 P
28 27 ad6antr φ a U b U f U q U F a = F f F b = F q F P GrpHom F 𝑠 P
29 simp-6r φ a U b U f U q U F a = F f F b = F q a U
30 simp-5r φ a U b U f U q U F a = F f F b = F q b U
31 eqid + F 𝑠 P = + F 𝑠 P
32 2 13 31 ghmlin F P GrpHom F 𝑠 P a U b U F a + P b = F a + F 𝑠 P F b
33 28 29 30 32 syl3anc φ a U b U f U q U F a = F f F b = F q F a + P b = F a + F 𝑠 P F b
34 simp-4r φ a U b U f U q U F a = F f F b = F q f U
35 simpllr φ a U b U f U q U F a = F f F b = F q q U
36 2 13 31 ghmlin F P GrpHom F 𝑠 P f U q U F f + P q = F f + F 𝑠 P F q
37 28 34 35 36 syl3anc φ a U b U f U q U F a = F f F b = F q F f + P q = F f + F 𝑠 P F q
38 25 33 37 3eqtr4d φ a U b U f U q U F a = F f F b = F q F a + P b = F f + P q
39 38 expl φ a U b U f U q U F a = F f F b = F q F a + P b = F f + P q
40 39 anasss φ a U b U f U q U F a = F f F b = F q F a + P b = F f + P q
41 22 40 sylanbr φ a U b U f U q U F a = F f F b = F q F a + P b = F f + P q
42 41 3impa φ a U b U f U q U F a = F f F b = F q F a + P b = F f + P q
43 1 ply1ring R Ring P Ring
44 6 43 syl φ P Ring
45 44 ringgrpd φ P Grp
46 45 grpmndd φ P Mnd
47 11 12 13 21 42 46 8 imasmnd φ F 𝑠 P Mnd F 0 ˙ = 0 F 𝑠 P
48 47 simprd φ F 0 ˙ = 0 F 𝑠 P
49 oveq1 f = 0 ˙ f E M = 0 ˙ E M
50 1 2 4 3 6 7 8 r1p0 φ 0 ˙ E M = 0 ˙
51 49 50 sylan9eqr φ f = 0 ˙ f E M = 0 ˙
52 2 8 ring0cl P Ring 0 ˙ U
53 44 52 syl φ 0 ˙ U
54 5 51 53 53 fvmptd2 φ F 0 ˙ = 0 ˙
55 48 54 eqtr3d φ 0 F 𝑠 P = 0 ˙
56 55 sneqd φ 0 F 𝑠 P = 0 ˙
57 56 imaeq2d φ F -1 0 F 𝑠 P = F -1 0 ˙
58 57 9 eqtr4di φ F -1 0 F 𝑠 P = K
59 58 oveq2d φ P ~ QG F -1 0 F 𝑠 P = P ~ QG K
60 59 oveq2d φ P / 𝑠 P ~ QG F -1 0 F 𝑠 P = P / 𝑠 P ~ QG K
61 60 10 eqtr4di φ P / 𝑠 P ~ QG F -1 0 F 𝑠 P = Q
62 eqid 0 F 𝑠 P = 0 F 𝑠 P
63 eqid F -1 0 F 𝑠 P = F -1 0 F 𝑠 P
64 eqid P / 𝑠 P ~ QG F -1 0 F 𝑠 P = P / 𝑠 P ~ QG F -1 0 F 𝑠 P
65 19 ffnd φ F Fn U
66 fnima F Fn U F U = ran F
67 65 66 syl φ F U = ran F
68 1 fvexi P V
69 68 a1i φ P V
70 11 12 21 69 imasbas φ F U = Base F 𝑠 P
71 67 70 eqtr3d φ ran F = Base F 𝑠 P
72 62 26 63 64 71 lmicqusker φ P / 𝑠 P ~ QG F -1 0 F 𝑠 P 𝑚 F 𝑠 P
73 61 72 eqbrtrrd φ Q 𝑚 F 𝑠 P