Metamath Proof Explorer


Theorem r1pvsca

Description: Scalar multiplication property of the polynomial remainder operation. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P = Poly 1 R
r1padd1.u U = Base P
r1padd1.n N = Unic 1p R
r1padd1.e E = rem 1p R
r1pvsca.6 φ R Ring
r1pvsca.7 φ A U
r1pvsca.10 φ D N
r1pvsca.1 × ˙ = P
r1pvsca.k K = Base R
r1pvsca.2 φ B K
Assertion r1pvsca φ B × ˙ A E D = B × ˙ A E D

Proof

Step Hyp Ref Expression
1 r1padd1.p P = Poly 1 R
2 r1padd1.u U = Base P
3 r1padd1.n N = Unic 1p R
4 r1padd1.e E = rem 1p R
5 r1pvsca.6 φ R Ring
6 r1pvsca.7 φ A U
7 r1pvsca.10 φ D N
8 r1pvsca.1 × ˙ = P
9 r1pvsca.k K = Base R
10 r1pvsca.2 φ B K
11 eqid quot 1p R = quot 1p R
12 11 1 2 3 q1pcl R Ring A U D N A quot 1p R D U
13 5 6 7 12 syl3anc φ A quot 1p R D U
14 1 2 3 uc1pcl D N D U
15 7 14 syl φ D U
16 eqid P = P
17 1 16 2 9 8 ply1ass23l R Ring B K A quot 1p R D U D U B × ˙ A quot 1p R D P D = B × ˙ A quot 1p R D P D
18 5 10 13 15 17 syl13anc φ B × ˙ A quot 1p R D P D = B × ˙ A quot 1p R D P D
19 18 oveq2d φ B × ˙ A - P B × ˙ A quot 1p R D P D = B × ˙ A - P B × ˙ A quot 1p R D P D
20 1 2 3 11 5 6 7 8 9 10 q1pvsca φ B × ˙ A quot 1p R D = B × ˙ A quot 1p R D
21 20 oveq1d φ B × ˙ A quot 1p R D P D = B × ˙ A quot 1p R D P D
22 21 oveq2d φ B × ˙ A - P B × ˙ A quot 1p R D P D = B × ˙ A - P B × ˙ A quot 1p R D P D
23 eqid Scalar P = Scalar P
24 eqid Base Scalar P = Base Scalar P
25 eqid - P = - P
26 1 ply1lmod R Ring P LMod
27 5 26 syl φ P LMod
28 1 ply1sca R Ring R = Scalar P
29 5 28 syl φ R = Scalar P
30 29 fveq2d φ Base R = Base Scalar P
31 9 30 eqtrid φ K = Base Scalar P
32 10 31 eleqtrd φ B Base Scalar P
33 1 ply1ring R Ring P Ring
34 5 33 syl φ P Ring
35 2 16 34 13 15 ringcld φ A quot 1p R D P D U
36 2 8 23 24 25 27 32 6 35 lmodsubdi φ B × ˙ A - P A quot 1p R D P D = B × ˙ A - P B × ˙ A quot 1p R D P D
37 19 22 36 3eqtr4d φ B × ˙ A - P B × ˙ A quot 1p R D P D = B × ˙ A - P A quot 1p R D P D
38 2 23 8 24 27 32 6 lmodvscld φ B × ˙ A U
39 4 1 2 11 16 25 r1pval B × ˙ A U D U B × ˙ A E D = B × ˙ A - P B × ˙ A quot 1p R D P D
40 38 15 39 syl2anc φ B × ˙ A E D = B × ˙ A - P B × ˙ A quot 1p R D P D
41 4 1 2 11 16 25 r1pval A U D U A E D = A - P A quot 1p R D P D
42 6 15 41 syl2anc φ A E D = A - P A quot 1p R D P D
43 42 oveq2d φ B × ˙ A E D = B × ˙ A - P A quot 1p R D P D
44 37 40 43 3eqtr4d φ B × ˙ A E D = B × ˙ A E D