Metamath Proof Explorer


Theorem r1pwcl

Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1pwcl LimBAR1B𝒫AR1B

Proof

Step Hyp Ref Expression
1 r1elwf AR1BAR1On
2 elfvdm AR1BBdomR1
3 1 2 jca AR1BAR1OnBdomR1
4 3 a1i LimBAR1BAR1OnBdomR1
5 r1elwf 𝒫AR1B𝒫AR1On
6 pwwf AR1On𝒫AR1On
7 5 6 sylibr 𝒫AR1BAR1On
8 elfvdm 𝒫AR1BBdomR1
9 7 8 jca 𝒫AR1BAR1OnBdomR1
10 9 a1i LimB𝒫AR1BAR1OnBdomR1
11 limsuc LimBrankABsucrankAB
12 11 adantr LimBAR1OnBdomR1rankABsucrankAB
13 rankpwi AR1Onrank𝒫A=sucrankA
14 13 ad2antrl LimBAR1OnBdomR1rank𝒫A=sucrankA
15 14 eleq1d LimBAR1OnBdomR1rank𝒫ABsucrankAB
16 12 15 bitr4d LimBAR1OnBdomR1rankABrank𝒫AB
17 rankr1ag AR1OnBdomR1AR1BrankAB
18 17 adantl LimBAR1OnBdomR1AR1BrankAB
19 rankr1ag 𝒫AR1OnBdomR1𝒫AR1Brank𝒫AB
20 6 19 sylanb AR1OnBdomR1𝒫AR1Brank𝒫AB
21 20 adantl LimBAR1OnBdomR1𝒫AR1Brank𝒫AB
22 16 18 21 3bitr4d LimBAR1OnBdomR1AR1B𝒫AR1B
23 22 ex LimBAR1OnBdomR1AR1B𝒫AR1B
24 4 10 23 pm5.21ndd LimBAR1B𝒫AR1B