Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
|
2 |
1
|
simpri |
|
3 |
|
limord |
|
4 |
2 3
|
ax-mp |
|
5 |
|
ordsson |
|
6 |
4 5
|
ax-mp |
|
7 |
|
elfvdm |
|
8 |
6 7
|
sselid |
|
9 |
|
onzsl |
|
10 |
8 9
|
sylib |
|
11 |
|
noel |
|
12 |
|
fveq2 |
|
13 |
|
r10 |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
eleq2d |
|
16 |
15
|
biimpcd |
|
17 |
11 16
|
mtoi |
|
18 |
17
|
pm2.21d |
|
19 |
|
simpl |
|
20 |
|
simpr |
|
21 |
20
|
fveq2d |
|
22 |
7
|
adantr |
|
23 |
20 22
|
eqeltrrd |
|
24 |
|
limsuc |
|
25 |
2 24
|
ax-mp |
|
26 |
23 25
|
sylibr |
|
27 |
|
r1sucg |
|
28 |
26 27
|
syl |
|
29 |
21 28
|
eqtrd |
|
30 |
19 29
|
eleqtrd |
|
31 |
|
elpwi |
|
32 |
|
sspw |
|
33 |
30 31 32
|
3syl |
|
34 |
33 29
|
sseqtrrd |
|
35 |
34
|
ex |
|
36 |
35
|
rexlimdvw |
|
37 |
|
r1tr |
|
38 |
|
simpl |
|
39 |
|
r1limg |
|
40 |
7 39
|
sylan |
|
41 |
38 40
|
eleqtrd |
|
42 |
|
eliun |
|
43 |
41 42
|
sylib |
|
44 |
|
simprl |
|
45 |
|
limsuc |
|
46 |
45
|
ad2antlr |
|
47 |
44 46
|
mpbid |
|
48 |
|
limsuc |
|
49 |
48
|
ad2antlr |
|
50 |
47 49
|
mpbid |
|
51 |
|
r1tr |
|
52 |
|
simprr |
|
53 |
|
trss |
|
54 |
51 52 53
|
mpsyl |
|
55 |
54 32
|
syl |
|
56 |
7
|
ad2antrr |
|
57 |
|
ordtr1 |
|
58 |
4 57
|
ax-mp |
|
59 |
44 56 58
|
syl2anc |
|
60 |
59 27
|
syl |
|
61 |
55 60
|
sseqtrrd |
|
62 |
|
fvex |
|
63 |
62
|
elpw2 |
|
64 |
61 63
|
sylibr |
|
65 |
59 25
|
sylib |
|
66 |
|
r1sucg |
|
67 |
65 66
|
syl |
|
68 |
64 67
|
eleqtrrd |
|
69 |
|
fveq2 |
|
70 |
69
|
eleq2d |
|
71 |
70
|
rspcev |
|
72 |
50 68 71
|
syl2anc |
|
73 |
43 72
|
rexlimddv |
|
74 |
|
eliun |
|
75 |
73 74
|
sylibr |
|
76 |
|
r1limg |
|
77 |
7 76
|
sylan |
|
78 |
75 77
|
eleqtrrd |
|
79 |
|
trss |
|
80 |
37 78 79
|
mpsyl |
|
81 |
80
|
ex |
|
82 |
81
|
adantld |
|
83 |
18 36 82
|
3jaod |
|
84 |
10 83
|
mpd |
|