| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
|
| 2 |
1
|
simpri |
|
| 3 |
|
limord |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
ordsson |
|
| 6 |
4 5
|
ax-mp |
|
| 7 |
|
elfvdm |
|
| 8 |
6 7
|
sselid |
|
| 9 |
|
onzsl |
|
| 10 |
8 9
|
sylib |
|
| 11 |
|
noel |
|
| 12 |
|
fveq2 |
|
| 13 |
|
r10 |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
14
|
eleq2d |
|
| 16 |
15
|
biimpcd |
|
| 17 |
11 16
|
mtoi |
|
| 18 |
17
|
pm2.21d |
|
| 19 |
|
simpl |
|
| 20 |
|
simpr |
|
| 21 |
20
|
fveq2d |
|
| 22 |
7
|
adantr |
|
| 23 |
20 22
|
eqeltrrd |
|
| 24 |
|
limsuc |
|
| 25 |
2 24
|
ax-mp |
|
| 26 |
23 25
|
sylibr |
|
| 27 |
|
r1sucg |
|
| 28 |
26 27
|
syl |
|
| 29 |
21 28
|
eqtrd |
|
| 30 |
19 29
|
eleqtrd |
|
| 31 |
|
elpwi |
|
| 32 |
|
sspw |
|
| 33 |
30 31 32
|
3syl |
|
| 34 |
33 29
|
sseqtrrd |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
rexlimdvw |
|
| 37 |
|
r1tr |
|
| 38 |
|
simpl |
|
| 39 |
|
r1limg |
|
| 40 |
7 39
|
sylan |
|
| 41 |
38 40
|
eleqtrd |
|
| 42 |
|
eliun |
|
| 43 |
41 42
|
sylib |
|
| 44 |
|
simprl |
|
| 45 |
|
limsuc |
|
| 46 |
45
|
ad2antlr |
|
| 47 |
44 46
|
mpbid |
|
| 48 |
|
limsuc |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
47 49
|
mpbid |
|
| 51 |
|
r1tr |
|
| 52 |
|
simprr |
|
| 53 |
|
trss |
|
| 54 |
51 52 53
|
mpsyl |
|
| 55 |
54 32
|
syl |
|
| 56 |
7
|
ad2antrr |
|
| 57 |
|
ordtr1 |
|
| 58 |
4 57
|
ax-mp |
|
| 59 |
44 56 58
|
syl2anc |
|
| 60 |
59 27
|
syl |
|
| 61 |
55 60
|
sseqtrrd |
|
| 62 |
|
fvex |
|
| 63 |
62
|
elpw2 |
|
| 64 |
61 63
|
sylibr |
|
| 65 |
59 25
|
sylib |
|
| 66 |
|
r1sucg |
|
| 67 |
65 66
|
syl |
|
| 68 |
64 67
|
eleqtrrd |
|
| 69 |
|
fveq2 |
|
| 70 |
69
|
eleq2d |
|
| 71 |
70
|
rspcev |
|
| 72 |
50 68 71
|
syl2anc |
|
| 73 |
43 72
|
rexlimddv |
|
| 74 |
|
eliun |
|
| 75 |
73 74
|
sylibr |
|
| 76 |
|
r1limg |
|
| 77 |
7 76
|
sylan |
|
| 78 |
75 77
|
eleqtrrd |
|
| 79 |
|
trss |
|
| 80 |
37 78 79
|
mpsyl |
|
| 81 |
80
|
ex |
|
| 82 |
81
|
adantld |
|
| 83 |
18 36 82
|
3jaod |
|
| 84 |
10 83
|
mpd |
|