Metamath Proof Explorer


Theorem r1rankidb

Description: Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1rankidb A R1 On A R1 rank A

Proof

Step Hyp Ref Expression
1 ssid rank A rank A
2 rankdmr1 rank A dom R1
3 rankr1bg A R1 On rank A dom R1 A R1 rank A rank A rank A
4 2 3 mpan2 A R1 On A R1 rank A rank A rank A
5 1 4 mpbiri A R1 On A R1 rank A