Metamath Proof Explorer


Theorem r1sscl

Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1sscl A R1 B C A C R1 B

Proof

Step Hyp Ref Expression
1 r1pwss A R1 B 𝒫 A R1 B
2 1 adantr A R1 B C A 𝒫 A R1 B
3 elpw2g A R1 B C 𝒫 A C A
4 3 biimpar A R1 B C A C 𝒫 A
5 2 4 sseldd A R1 B C A C R1 B