Metamath Proof Explorer


Theorem r1sucg

Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1sucg A dom R1 R1 suc A = 𝒫 R1 A

Proof

Step Hyp Ref Expression
1 rdgsucg A dom rec x V 𝒫 x rec x V 𝒫 x suc A = x V 𝒫 x rec x V 𝒫 x A
2 df-r1 R1 = rec x V 𝒫 x
3 2 dmeqi dom R1 = dom rec x V 𝒫 x
4 1 3 eleq2s A dom R1 rec x V 𝒫 x suc A = x V 𝒫 x rec x V 𝒫 x A
5 2 fveq1i R1 suc A = rec x V 𝒫 x suc A
6 fvex R1 A V
7 pweq x = R1 A 𝒫 x = 𝒫 R1 A
8 eqid x V 𝒫 x = x V 𝒫 x
9 6 pwex 𝒫 R1 A V
10 7 8 9 fvmpt R1 A V x V 𝒫 x R1 A = 𝒫 R1 A
11 6 10 ax-mp x V 𝒫 x R1 A = 𝒫 R1 A
12 2 fveq1i R1 A = rec x V 𝒫 x A
13 12 fveq2i x V 𝒫 x R1 A = x V 𝒫 x rec x V 𝒫 x A
14 11 13 eqtr3i 𝒫 R1 A = x V 𝒫 x rec x V 𝒫 x A
15 4 5 14 3eqtr4g A dom R1 R1 suc A = 𝒫 R1 A