Metamath Proof Explorer


Theorem r1tr2

Description: The union of a cumulative hierarchy of sets at ordinal A is a subset of the hierarchy at A . JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011)

Ref Expression
Assertion r1tr2 R1 A R1 A

Proof

Step Hyp Ref Expression
1 r1tr Tr R1 A
2 df-tr Tr R1 A R1 A R1 A
3 1 2 mpbi R1 A R1 A