| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|
| 2 |
|
simplr |
|
| 3 |
|
simpll |
|
| 4 |
|
onwf |
|
| 5 |
4
|
sseli |
|
| 6 |
|
eqid |
|
| 7 |
|
rankr1c |
|
| 8 |
6 7
|
mpbii |
|
| 9 |
5 8
|
syl |
|
| 10 |
9
|
simpld |
|
| 11 |
|
r1fnon |
|
| 12 |
11
|
fndmi |
|
| 13 |
12
|
eleq2i |
|
| 14 |
|
rankonid |
|
| 15 |
13 14
|
bitr3i |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
sylbi |
|
| 18 |
10 17
|
neleqtrd |
|
| 19 |
18
|
adantl |
|
| 20 |
|
onssr1 |
|
| 21 |
13 20
|
sylbir |
|
| 22 |
|
tsken |
|
| 23 |
21 22
|
sylan2 |
|
| 24 |
23
|
ord |
|
| 25 |
19 24
|
mt3d |
|
| 26 |
2 3 25
|
syl2anc |
|
| 27 |
|
carden2b |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
simpl |
|
| 30 |
|
simplr |
|
| 31 |
21
|
adantr |
|
| 32 |
31
|
sselda |
|
| 33 |
|
tsksdom |
|
| 34 |
30 32 33
|
syl2anc |
|
| 35 |
|
simpll |
|
| 36 |
25
|
ensymd |
|
| 37 |
30 35 36
|
syl2anc |
|
| 38 |
|
sdomentr |
|
| 39 |
34 37 38
|
syl2anc |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
iscard |
|
| 42 |
29 40 41
|
sylanbrc |
|
| 43 |
42
|
adantr |
|
| 44 |
28 43
|
eqtr3d |
|
| 45 |
|
r10 |
|
| 46 |
|
on0eln0 |
|
| 47 |
46
|
biimpar |
|
| 48 |
|
r1sdom |
|
| 49 |
47 48
|
syldan |
|
| 50 |
45 49
|
eqbrtrrid |
|
| 51 |
|
fvex |
|
| 52 |
51
|
0sdom |
|
| 53 |
50 52
|
sylib |
|
| 54 |
53
|
adantlr |
|
| 55 |
|
tskcard |
|
| 56 |
2 54 55
|
syl2anc |
|
| 57 |
44 56
|
eqeltrrd |
|
| 58 |
57
|
ex |
|
| 59 |
1 58
|
biimtrrid |
|
| 60 |
59
|
orrd |
|
| 61 |
60
|
ex |
|
| 62 |
|
fveq2 |
|
| 63 |
62 45
|
eqtrdi |
|
| 64 |
|
0tsk |
|
| 65 |
63 64
|
eqeltrdi |
|
| 66 |
|
inatsk |
|
| 67 |
65 66
|
jaoi |
|
| 68 |
61 67
|
impbid1 |
|