Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
fveq2d |
|
3 |
|
r10 |
|
4 |
2 3
|
eqtrdi |
|
5 |
|
0ss |
|
6 |
5
|
a1i |
|
7 |
4 6
|
eqsstrd |
|
8 |
|
nfv |
|
9 |
|
nfcv |
|
10 |
|
nfiu1 |
|
11 |
9 10
|
nfss |
|
12 |
|
simpr |
|
13 |
12
|
fveq2d |
|
14 |
|
eleq1 |
|
15 |
14
|
biimpac |
|
16 |
|
r1funlim |
|
17 |
16
|
simpri |
|
18 |
|
limsuc |
|
19 |
17 18
|
ax-mp |
|
20 |
15 19
|
sylibr |
|
21 |
|
r1sucg |
|
22 |
20 21
|
syl |
|
23 |
13 22
|
eqtrd |
|
24 |
|
vex |
|
25 |
24
|
sucid |
|
26 |
25 12
|
eleqtrrid |
|
27 |
|
ssiun2 |
|
28 |
26 27
|
syl |
|
29 |
23 28
|
eqsstrd |
|
30 |
29
|
ex |
|
31 |
30
|
a1d |
|
32 |
8 11 31
|
rexlimd |
|
33 |
32
|
imp |
|
34 |
|
r1limg |
|
35 |
|
r1tr |
|
36 |
|
dftr4 |
|
37 |
35 36
|
mpbi |
|
38 |
37
|
a1i |
|
39 |
38
|
ralrimivw |
|
40 |
|
ss2iun |
|
41 |
39 40
|
syl |
|
42 |
34 41
|
eqsstrd |
|
43 |
42
|
adantrl |
|
44 |
|
limord |
|
45 |
17 44
|
ax-mp |
|
46 |
|
ordsson |
|
47 |
45 46
|
ax-mp |
|
48 |
47
|
sseli |
|
49 |
|
onzsl |
|
50 |
48 49
|
sylib |
|
51 |
7 33 43 50
|
mpjao3dan |
|
52 |
|
ordtr1 |
|
53 |
45 52
|
ax-mp |
|
54 |
53
|
ancoms |
|
55 |
54 21
|
syl |
|
56 |
|
simpr |
|
57 |
|
ordelord |
|
58 |
45 57
|
mpan |
|
59 |
58
|
adantr |
|
60 |
|
ordelsuc |
|
61 |
56 59 60
|
syl2anc |
|
62 |
56 61
|
mpbid |
|
63 |
54 19
|
sylib |
|
64 |
|
simpl |
|
65 |
|
r1ord3g |
|
66 |
63 64 65
|
syl2anc |
|
67 |
62 66
|
mpd |
|
68 |
55 67
|
eqsstrrd |
|
69 |
68
|
ralrimiva |
|
70 |
|
iunss |
|
71 |
69 70
|
sylibr |
|
72 |
51 71
|
eqssd |
|