| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
fveq2d |
|
| 3 |
|
r10 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
|
0ss |
|
| 6 |
5
|
a1i |
|
| 7 |
4 6
|
eqsstrd |
|
| 8 |
|
nfv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfiu1 |
|
| 11 |
9 10
|
nfss |
|
| 12 |
|
simpr |
|
| 13 |
12
|
fveq2d |
|
| 14 |
|
eleq1 |
|
| 15 |
14
|
biimpac |
|
| 16 |
|
r1funlim |
|
| 17 |
16
|
simpri |
|
| 18 |
|
limsuc |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
15 19
|
sylibr |
|
| 21 |
|
r1sucg |
|
| 22 |
20 21
|
syl |
|
| 23 |
13 22
|
eqtrd |
|
| 24 |
|
vex |
|
| 25 |
24
|
sucid |
|
| 26 |
25 12
|
eleqtrrid |
|
| 27 |
|
ssiun2 |
|
| 28 |
26 27
|
syl |
|
| 29 |
23 28
|
eqsstrd |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
a1d |
|
| 32 |
8 11 31
|
rexlimd |
|
| 33 |
32
|
imp |
|
| 34 |
|
r1limg |
|
| 35 |
|
r1tr |
|
| 36 |
|
dftr4 |
|
| 37 |
35 36
|
mpbi |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
ralrimivw |
|
| 40 |
|
ss2iun |
|
| 41 |
39 40
|
syl |
|
| 42 |
34 41
|
eqsstrd |
|
| 43 |
42
|
adantrl |
|
| 44 |
|
limord |
|
| 45 |
17 44
|
ax-mp |
|
| 46 |
|
ordsson |
|
| 47 |
45 46
|
ax-mp |
|
| 48 |
47
|
sseli |
|
| 49 |
|
onzsl |
|
| 50 |
48 49
|
sylib |
|
| 51 |
7 33 43 50
|
mpjao3dan |
|
| 52 |
|
ordtr1 |
|
| 53 |
45 52
|
ax-mp |
|
| 54 |
53
|
ancoms |
|
| 55 |
54 21
|
syl |
|
| 56 |
|
simpr |
|
| 57 |
|
ordelord |
|
| 58 |
45 57
|
mpan |
|
| 59 |
58
|
adantr |
|
| 60 |
|
ordelsuc |
|
| 61 |
56 59 60
|
syl2anc |
|
| 62 |
56 61
|
mpbid |
|
| 63 |
54 19
|
sylib |
|
| 64 |
|
simpl |
|
| 65 |
|
r1ord3g |
|
| 66 |
63 64 65
|
syl2anc |
|
| 67 |
62 66
|
mpd |
|
| 68 |
55 67
|
eqsstrrd |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
|
iunss |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
51 71
|
eqssd |
|