Metamath Proof Explorer


Theorem r1val3

Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of Monk1 p. 113. (Contributed by NM, 30-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion r1val3 A On R1 A = x A 𝒫 y | rank y x

Proof

Step Hyp Ref Expression
1 r1fnon R1 Fn On
2 1 fndmi dom R1 = On
3 2 eleq2i A dom R1 A On
4 r1val1 A dom R1 R1 A = x A 𝒫 R1 x
5 3 4 sylbir A On R1 A = x A 𝒫 R1 x
6 onelon A On x A x On
7 r1val2 x On R1 x = y | rank y x
8 6 7 syl A On x A R1 x = y | rank y x
9 8 pweqd A On x A 𝒫 R1 x = 𝒫 y | rank y x
10 9 iuneq2dv A On x A 𝒫 R1 x = x A 𝒫 y | rank y x
11 5 10 eqtrd A On R1 A = x A 𝒫 y | rank y x