Metamath Proof Explorer


Theorem r1wunlim

Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion r1wunlim A V R1 A WUni Lim A

Proof

Step Hyp Ref Expression
1 simpr A V R1 A WUni R1 A WUni
2 1 wun0 A V R1 A WUni R1 A
3 elfvdm R1 A A dom R1
4 2 3 syl A V R1 A WUni A dom R1
5 r1fnon R1 Fn On
6 5 fndmi dom R1 = On
7 4 6 eleqtrdi A V R1 A WUni A On
8 eloni A On Ord A
9 7 8 syl A V R1 A WUni Ord A
10 n0i R1 A ¬ R1 A =
11 2 10 syl A V R1 A WUni ¬ R1 A =
12 fveq2 A = R1 A = R1
13 r10 R1 =
14 12 13 eqtrdi A = R1 A =
15 11 14 nsyl A V R1 A WUni ¬ A =
16 suceloni A On suc A On
17 7 16 syl A V R1 A WUni suc A On
18 sucidg A On A suc A
19 7 18 syl A V R1 A WUni A suc A
20 r1ord suc A On A suc A R1 A R1 suc A
21 17 19 20 sylc A V R1 A WUni R1 A R1 suc A
22 r1elwf R1 A R1 suc A R1 A R1 On
23 wfelirr R1 A R1 On ¬ R1 A R1 A
24 21 22 23 3syl A V R1 A WUni ¬ R1 A R1 A
25 simprr A V R1 A WUni x On A = suc x A = suc x
26 25 fveq2d A V R1 A WUni x On A = suc x R1 A = R1 suc x
27 r1suc x On R1 suc x = 𝒫 R1 x
28 27 ad2antrl A V R1 A WUni x On A = suc x R1 suc x = 𝒫 R1 x
29 26 28 eqtrd A V R1 A WUni x On A = suc x R1 A = 𝒫 R1 x
30 simplr A V R1 A WUni x On A = suc x R1 A WUni
31 7 adantr A V R1 A WUni x On A = suc x A On
32 sucidg x On x suc x
33 32 ad2antrl A V R1 A WUni x On A = suc x x suc x
34 33 25 eleqtrrd A V R1 A WUni x On A = suc x x A
35 r1ord A On x A R1 x R1 A
36 31 34 35 sylc A V R1 A WUni x On A = suc x R1 x R1 A
37 30 36 wunpw A V R1 A WUni x On A = suc x 𝒫 R1 x R1 A
38 29 37 eqeltrd A V R1 A WUni x On A = suc x R1 A R1 A
39 38 rexlimdvaa A V R1 A WUni x On A = suc x R1 A R1 A
40 24 39 mtod A V R1 A WUni ¬ x On A = suc x
41 ioran ¬ A = x On A = suc x ¬ A = ¬ x On A = suc x
42 15 40 41 sylanbrc A V R1 A WUni ¬ A = x On A = suc x
43 dflim3 Lim A Ord A ¬ A = x On A = suc x
44 9 42 43 sylanbrc A V R1 A WUni Lim A
45 r1limwun A V Lim A R1 A WUni
46 44 45 impbida A V R1 A WUni Lim A