Metamath Proof Explorer


Theorem r2al

Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Assertion r2al xAyBφxyxAyBφ

Proof

Step Hyp Ref Expression
1 19.21v yxAyBφxAyyBφ
2 1 r2allem xAyBφxyxAyBφ