Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r2alf
Metamath Proof Explorer
Description: Double restricted universal quantification. (Contributed by Mario
Carneiro , 14-Oct-2016) Use r2allem . (Revised by Wolf Lammen , 9-Jan-2020)
Ref
Expression
Hypothesis
r2alf.1
⊢ Ⅎ _ y A
Assertion
r2alf
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ∀ x ∀ y x ∈ A ∧ y ∈ B → φ
Proof
Step
Hyp
Ref
Expression
1
r2alf.1
⊢ Ⅎ _ y A
2
1
nfcri
⊢ Ⅎ y x ∈ A
3
2
19.21
⊢ ∀ y x ∈ A → y ∈ B → φ ↔ x ∈ A → ∀ y y ∈ B → φ
4
3
r2allem
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ∀ x ∀ y x ∈ A ∧ y ∈ B → φ