Metamath Proof Explorer


Theorem r2allem

Description: Lemma factoring out common proof steps of r2alf and r2al . Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020)

Ref Expression
Hypothesis r2allem.1 yxAyBφxAyyBφ
Assertion r2allem xAyBφxyxAyBφ

Proof

Step Hyp Ref Expression
1 r2allem.1 yxAyBφxAyyBφ
2 df-ral xAyBφxxAyBφ
3 impexp xAyBφxAyBφ
4 3 albii yxAyBφyxAyBφ
5 df-ral yBφyyBφ
6 5 imbi2i xAyBφxAyyBφ
7 1 4 6 3bitr4i yxAyBφxAyBφ
8 7 albii xyxAyBφxxAyBφ
9 2 8 bitr4i xAyBφxyxAyBφ