Metamath Proof Explorer


Theorem r2exf

Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016) Use r2exlem . (Revised by Wolf Lammen, 10-Jan-2020)

Ref Expression
Hypothesis r2exf.1 _ y A
Assertion r2exf x A y B φ x y x A y B φ

Proof

Step Hyp Ref Expression
1 r2exf.1 _ y A
2 1 r2alf x A y B ¬ φ x y x A y B ¬ φ
3 2 r2exlem x A y B φ x y x A y B φ