Metamath Proof Explorer


Theorem raaan2

Description: Rearrange restricted quantifiers with two different restricting classes, analogous to raaan . It is necessary that either both restricting classes are empty or both are not empty. (Contributed by Alexander van der Vekens, 29-Jun-2017)

Ref Expression
Hypotheses raaan2.1 y φ
raaan2.2 x ψ
Assertion raaan2 A = B = x A y B φ ψ x A φ y B ψ

Proof

Step Hyp Ref Expression
1 raaan2.1 y φ
2 raaan2.2 x ψ
3 dfbi3 A = B = A = B = ¬ A = ¬ B =
4 rzal A = x A y B φ ψ
5 4 adantr A = B = x A y B φ ψ
6 rzal A = x A φ
7 6 adantr A = B = x A φ
8 rzal B = y B ψ
9 8 adantl A = B = y B ψ
10 pm5.1 x A y B φ ψ x A φ y B ψ x A y B φ ψ x A φ y B ψ
11 5 7 9 10 syl12anc A = B = x A y B φ ψ x A φ y B ψ
12 df-ne B ¬ B =
13 1 r19.28z B y B φ ψ φ y B ψ
14 13 ralbidv B x A y B φ ψ x A φ y B ψ
15 12 14 sylbir ¬ B = x A y B φ ψ x A φ y B ψ
16 df-ne A ¬ A =
17 nfcv _ x B
18 17 2 nfralw x y B ψ
19 18 r19.27z A x A φ y B ψ x A φ y B ψ
20 16 19 sylbir ¬ A = x A φ y B ψ x A φ y B ψ
21 15 20 sylan9bbr ¬ A = ¬ B = x A y B φ ψ x A φ y B ψ
22 11 21 jaoi A = B = ¬ A = ¬ B = x A y B φ ψ x A φ y B ψ
23 3 22 sylbi A = B = x A y B φ ψ x A φ y B ψ