Metamath Proof Explorer


Theorem rab2ex

Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypotheses rab2ex.1 B=yA|ψ
rab2ex.2 AV
Assertion rab2ex xB|φV

Proof

Step Hyp Ref Expression
1 rab2ex.1 B=yA|ψ
2 rab2ex.2 AV
3 1 2 rabex2 BV
4 3 rabex xB|φV