Metamath Proof Explorer


Theorem rabbia2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis rabbia2.1 xAψxBχ
Assertion rabbia2 xA|ψ=xB|χ

Proof

Step Hyp Ref Expression
1 rabbia2.1 xAψxBχ
2 1 a1i xAψxBχ
3 2 rabbidva2 xA|ψ=xB|χ
4 3 mptru xA|ψ=xB|χ