Metamath Proof Explorer


Theorem rabbida2

Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabbida2.1 x φ
rabbida2.2 φ A = B
rabbida2.3 φ ψ χ
Assertion rabbida2 φ x A | ψ = x B | χ

Proof

Step Hyp Ref Expression
1 rabbida2.1 x φ
2 rabbida2.2 φ A = B
3 rabbida2.3 φ ψ χ
4 2 eleq2d φ x A x B
5 4 3 anbi12d φ x A ψ x B χ
6 1 5 abbid φ x | x A ψ = x | x B χ
7 df-rab x A | ψ = x | x A ψ
8 df-rab x B | χ = x | x B χ
9 6 7 8 3eqtr4g φ x A | ψ = x B | χ