Metamath Proof Explorer


Theorem rabbiia

Description: Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis rabbiia.1 x A φ ψ
Assertion rabbiia x A | φ = x A | ψ

Proof

Step Hyp Ref Expression
1 rabbiia.1 x A φ ψ
2 1 pm5.32i x A φ x A ψ
3 2 abbii x | x A φ = x | x A ψ
4 df-rab x A | φ = x | x A φ
5 df-rab x A | ψ = x | x A ψ
6 3 4 5 3eqtr4i x A | φ = x A | ψ