Metamath Proof Explorer


Theorem rabeq0

Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabeq0 x A | φ = x A ¬ φ

Proof

Step Hyp Ref Expression
1 ab0 x | x A φ = x ¬ x A φ
2 df-rab x A | φ = x | x A φ
3 2 eqeq1i x A | φ = x | x A φ =
4 raln x A ¬ φ x ¬ x A φ
5 1 3 4 3bitr4i x A | φ = x A ¬ φ