Metamath Proof Explorer


Theorem rabeq0w

Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 using implicit substitution, which does not require ax-10 , ax-11 , ax-12 , but requires ax-8 . (Contributed by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis rabeq0w.1 x = y φ ψ
Assertion rabeq0w x A | φ = y A ¬ ψ

Proof

Step Hyp Ref Expression
1 rabeq0w.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 anbi12d x = y x A φ y A ψ
4 3 ab0w x | x A φ = y ¬ y A ψ
5 df-rab x A | φ = x | x A φ
6 5 eqeq1i x A | φ = x | x A φ =
7 raln y A ¬ ψ y ¬ y A ψ
8 4 6 7 3bitr4i x A | φ = y A ¬ ψ