Metamath Proof Explorer


Theorem rabeqbida

Description: Version of rabeqbidva with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019)

Ref Expression
Hypotheses rabeqbida.nf x φ
rabeqbida.1 φ A = B
rabeqbida.2 φ x A ψ χ
Assertion rabeqbida φ x A | ψ = x B | χ

Proof

Step Hyp Ref Expression
1 rabeqbida.nf x φ
2 rabeqbida.1 φ A = B
3 rabeqbida.2 φ x A ψ χ
4 1 3 rabbida φ x A | ψ = x A | χ
5 1 2 rabeqd φ x A | χ = x B | χ
6 4 5 eqtrd φ x A | ψ = x B | χ