Metamath Proof Explorer


Theorem rabeqbidv

Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses rabeqbidv.1 φ A = B
rabeqbidv.2 φ ψ χ
Assertion rabeqbidv φ x A | ψ = x B | χ

Proof

Step Hyp Ref Expression
1 rabeqbidv.1 φ A = B
2 rabeqbidv.2 φ ψ χ
3 1 rabeqdv φ x A | ψ = x B | ψ
4 2 rabbidv φ x B | ψ = x B | χ
5 3 4 eqtrd φ x A | ψ = x B | χ