Metamath Proof Explorer


Theorem rabeqbidva

Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses rabeqbidva.1 φ A = B
rabeqbidva.2 φ x A ψ χ
Assertion rabeqbidva φ x A | ψ = x B | χ

Proof

Step Hyp Ref Expression
1 rabeqbidva.1 φ A = B
2 rabeqbidva.2 φ x A ψ χ
3 2 rabbidva φ x A | ψ = x A | χ
4 1 rabeqdv φ x A | χ = x B | χ
5 3 4 eqtrd φ x A | ψ = x B | χ