Metamath Proof Explorer


Theorem rabeqbidvaOLD

Description: Obsolete version of rabeqbidva as of 1-Sep-2025. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rabeqbidvaOLD.1 φ A = B
rabeqbidvaOLD.2 φ x A ψ χ
Assertion rabeqbidvaOLD φ x A | ψ = x B | χ

Proof

Step Hyp Ref Expression
1 rabeqbidvaOLD.1 φ A = B
2 rabeqbidvaOLD.2 φ x A ψ χ
3 2 rabbidva φ x A | ψ = x A | χ
4 1 rabeqdv φ x A | χ = x B | χ
5 3 4 eqtrd φ x A | ψ = x B | χ