Metamath Proof Explorer


Theorem rabeqf

Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004)

Ref Expression
Hypotheses rabeqf.1 _ x A
rabeqf.2 _ x B
Assertion rabeqf A = B x A | φ = x B | φ

Proof

Step Hyp Ref Expression
1 rabeqf.1 _ x A
2 rabeqf.2 _ x B
3 1 2 nfeq x A = B
4 eleq2 A = B x A x B
5 4 anbi1d A = B x A φ x B φ
6 3 5 abbid A = B x | x A φ = x | x B φ
7 df-rab x A | φ = x | x A φ
8 df-rab x B | φ = x | x B φ
9 6 7 8 3eqtr4g A = B x A | φ = x B | φ