Metamath Proof Explorer


Theorem rabeqsnd

Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021)

Ref Expression
Hypotheses rabeqsnd.0 x = B ψ χ
rabeqsnd.1 φ B A
rabeqsnd.2 φ χ
rabeqsnd.3 φ x A ψ x = B
Assertion rabeqsnd φ x A | ψ = B

Proof

Step Hyp Ref Expression
1 rabeqsnd.0 x = B ψ χ
2 rabeqsnd.1 φ B A
3 rabeqsnd.2 φ χ
4 rabeqsnd.3 φ x A ψ x = B
5 4 expl φ x A ψ x = B
6 5 alrimiv φ x x A ψ x = B
7 2 3 jca φ B A χ
8 7 a1d φ x = B B A χ
9 8 alrimiv φ x x = B B A χ
10 eleq1 x = B x A B A
11 10 1 anbi12d x = B x A ψ B A χ
12 11 pm5.74i x = B x A ψ x = B B A χ
13 12 albii x x = B x A ψ x x = B B A χ
14 9 13 sylibr φ x x = B x A ψ
15 6 14 jca φ x x A ψ x = B x x = B x A ψ
16 albiim x x A ψ x = B x x A ψ x = B x x = B x A ψ
17 15 16 sylibr φ x x A ψ x = B
18 rabeqsn x A | ψ = B x x A ψ x = B
19 17 18 sylibr φ x A | ψ = B