Metamath Proof Explorer


Theorem rabexf

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabexf.1 _ x A
rabexf.2 A V
Assertion rabexf x A | φ V

Proof

Step Hyp Ref Expression
1 rabexf.1 _ x A
2 rabexf.2 A V
3 1 rabexgf A V x A | φ V
4 2 3 ax-mp x A | φ V