Metamath Proof Explorer


Theorem rabexg

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999)

Ref Expression
Assertion rabexg A V x A | φ V

Proof

Step Hyp Ref Expression
1 ssrab2 x A | φ A
2 ssexg x A | φ A A V x A | φ V
3 1 2 mpan A V x A | φ V