Metamath Proof Explorer


Theorem rabexgfGS

Description: Separation Scheme in terms of a restricted class abstraction. To be removed in profit of Glauco's equivalent version. (Contributed by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypothesis rabexgfGS.1 _ x A
Assertion rabexgfGS A V x A | φ V

Proof

Step Hyp Ref Expression
1 rabexgfGS.1 _ x A
2 nfrab1 _ x x A | φ
3 2 1 dfss2f x A | φ A x x x A | φ x A
4 rabidim1 x x A | φ x A
5 3 4 mpgbir x A | φ A
6 elex A V A V
7 ssexg x A | φ A A V x A | φ V
8 5 6 7 sylancr A V x A | φ V