Metamath Proof Explorer


Theorem rabfi

Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion rabfi A Fin x A | φ Fin

Proof

Step Hyp Ref Expression
1 dfrab3 x A | φ = A x | φ
2 infi A Fin A x | φ Fin
3 1 2 eqeltrid A Fin x A | φ Fin