Metamath Proof Explorer


Theorem rabfmpunirn

Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016)

Ref Expression
Hypotheses rabfmpunirn.1 F = x V y W | φ
rabfmpunirn.2 W V
rabfmpunirn.3 y = B φ ψ
Assertion rabfmpunirn B ran F x V B W ψ

Proof

Step Hyp Ref Expression
1 rabfmpunirn.1 F = x V y W | φ
2 rabfmpunirn.2 W V
3 rabfmpunirn.3 y = B φ ψ
4 df-rab y W | φ = y | y W φ
5 4 mpteq2i x V y W | φ = x V y | y W φ
6 1 5 eqtri F = x V y | y W φ
7 2 zfausab y | y W φ V
8 eleq1 y = B y W B W
9 8 3 anbi12d y = B y W φ B W ψ
10 6 7 9 abfmpunirn B ran F B V x V B W ψ
11 elex B W B V
12 11 adantr B W ψ B V
13 12 rexlimivw x V B W ψ B V
14 13 pm4.71ri x V B W ψ B V x V B W ψ
15 10 14 bitr4i B ran F x V B W ψ