Metamath Proof Explorer


Theorem rabid2f

Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) (Revised by Thierry Arnoux, 13-Mar-2017)

Ref Expression
Hypothesis rabid2f.1 _ x A
Assertion rabid2f A = x A | φ x A φ

Proof

Step Hyp Ref Expression
1 rabid2f.1 _ x A
2 1 abeq2f A = x | x A φ x x A x A φ
3 pm4.71 x A φ x A x A φ
4 3 albii x x A φ x x A x A φ
5 2 4 bitr4i A = x | x A φ x x A φ
6 df-rab x A | φ = x | x A φ
7 6 eqeq2i A = x A | φ A = x | x A φ
8 df-ral x A φ x x A φ
9 5 7 8 3bitr4i A = x A | φ x A φ