Metamath Proof Explorer


Theorem rabidim2

Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion rabidim2 x x A | φ φ

Proof

Step Hyp Ref Expression
1 rabid x x A | φ x A φ
2 1 simprbi x x A | φ φ