Metamath Proof Explorer


Theorem rabn0

Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999) (Revised by BJ, 16-Jul-2021)

Ref Expression
Assertion rabn0 x A | φ x A φ

Proof

Step Hyp Ref Expression
1 rabeq0 x A | φ = x A ¬ φ
2 1 necon3abii x A | φ ¬ x A ¬ φ
3 dfrex2 x A φ ¬ x A ¬ φ
4 2 3 bitr4i x A | φ x A φ