Metamath Proof Explorer


Theorem rabnc

Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabnc x A | φ x A | ¬ φ =

Proof

Step Hyp Ref Expression
1 inrab x A | φ x A | ¬ φ = x A | φ ¬ φ
2 pm3.24 ¬ φ ¬ φ
3 2 rgenw x A ¬ φ ¬ φ
4 rabeq0 x A | φ ¬ φ = x A ¬ φ ¬ φ
5 3 4 mpbir x A | φ ¬ φ =
6 1 5 eqtri x A | φ x A | ¬ φ =