Metamath Proof Explorer


Theorem rabsnel

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by Thierry Arnoux, 15-Sep-2018)

Ref Expression
Hypothesis rabsnel.1 B V
Assertion rabsnel x A | φ = B B A

Proof

Step Hyp Ref Expression
1 rabsnel.1 B V
2 1 snid B B
3 eleq2 x A | φ = B B x A | φ B B
4 2 3 mpbiri x A | φ = B B x A | φ
5 elrabi B x A | φ B A
6 4 5 syl x A | φ = B B A