Metamath Proof Explorer


Theorem rabsneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabsneu A V x B | φ = A ∃! x B φ

Proof

Step Hyp Ref Expression
1 df-rab x B | φ = x | x B φ
2 1 eqeq1i x B | φ = A x | x B φ = A
3 absneu A V x | x B φ = A ∃! x x B φ
4 2 3 sylan2b A V x B | φ = A ∃! x x B φ
5 df-reu ∃! x B φ ∃! x x B φ
6 4 5 sylibr A V x B | φ = A ∃! x B φ