Metamath Proof Explorer


Theorem rabsnt

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses rabsnt.1 B V
rabsnt.2 x = B φ ψ
Assertion rabsnt x A | φ = B ψ

Proof

Step Hyp Ref Expression
1 rabsnt.1 B V
2 rabsnt.2 x = B φ ψ
3 1 snid B B
4 id x A | φ = B x A | φ = B
5 3 4 eleqtrrid x A | φ = B B x A | φ
6 2 elrab B x A | φ B A ψ
7 6 simprbi B x A | φ ψ
8 5 7 syl x A | φ = B ψ