Metamath Proof Explorer


Theorem rabss3d

Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Hypothesis rabss3d.1 φ x A ψ x B
Assertion rabss3d φ x A | ψ x B | ψ

Proof

Step Hyp Ref Expression
1 rabss3d.1 φ x A ψ x B
2 nfv x φ
3 nfrab1 _ x x A | ψ
4 nfrab1 _ x x B | ψ
5 simprr φ x A ψ ψ
6 1 5 jca φ x A ψ x B ψ
7 6 ex φ x A ψ x B ψ
8 rabid x x A | ψ x A ψ
9 rabid x x B | ψ x B ψ
10 7 8 9 3imtr4g φ x x A | ψ x x B | ψ
11 2 3 4 10 ssrd φ x A | ψ x B | ψ