Metamath Proof Explorer


Theorem rabssab

Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion rabssab x A | φ x | φ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 simpr x A φ φ
3 2 ss2abi x | x A φ x | φ
4 1 3 eqsstri x A | φ x | φ