Metamath Proof Explorer


Theorem rabssd

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rabssd.1 x φ
rabssd.2 _ x B
rabssd.3 φ x A χ x B
Assertion rabssd φ x A | χ B

Proof

Step Hyp Ref Expression
1 rabssd.1 x φ
2 rabssd.2 _ x B
3 rabssd.3 φ x A χ x B
4 3 3exp φ x A χ x B
5 1 4 ralrimi φ x A χ x B
6 2 rabssf x A | χ B x A χ x B
7 5 6 sylibr φ x A | χ B