Metamath Proof Explorer


Theorem rabssdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015)

Ref Expression
Hypothesis rabssdv.1 φ x A ψ x B
Assertion rabssdv φ x A | ψ B

Proof

Step Hyp Ref Expression
1 rabssdv.1 φ x A ψ x B
2 1 3exp φ x A ψ x B
3 2 ralrimiv φ x A ψ x B
4 rabss x A | ψ B x A ψ x B
5 3 4 sylibr φ x A | ψ B