Metamath Proof Explorer


Theorem rabssf

Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis rabssf.1 _ x B
Assertion rabssf x A | φ B x A φ x B

Proof

Step Hyp Ref Expression
1 rabssf.1 _ x B
2 df-rab x A | φ = x | x A φ
3 2 sseq1i x A | φ B x | x A φ B
4 1 abssf x | x A φ B x x A φ x B
5 impexp x A φ x B x A φ x B
6 5 albii x x A φ x B x x A φ x B
7 df-ral x A φ x B x x A φ x B
8 6 7 bitr4i x x A φ x B x A φ x B
9 3 4 8 3bitri x A | φ B x A φ x B